Top Header Menu

Scientists Identify Protein That Spurs Formation Of Alzheimer’s Plaques

sample brain tissueIn Alzheimer’s disease, the problem is amyloid-β, a protein that accumulates in the brain and causes nerve cells to weaken and die. Drugs designed to eliminate plaques made of amyloid-β have a fatal problem: they need to enter the brain and remove the plaques without attacking healthy brain cells. A new breakthrough from the laboratory of Nobel Prize winner Paul Greengard, however, suggests that treatments modeled on the blockbuster cancer drug Gleevec could be the solution. The findings are reported in the September 2 issue of the journal Nature.

Gleevec, it turns out, has the unique ability to bind to a protein that triggers the production of amyloid-β plaques. The new research from Greengard’s lab shows that this protein, called γ-secretase activating protein (GSAP), dramatically and selectively increases the production of amyloid-β peptide, which makes up the senile plaques found in the brains of most people with Alzheimer’s. GSAP works through a mechanism involving its interactions with γ-secretase, an enzyme that chops up the amyloid precursor protein, a large molecule produced naturally in the body and found in many different types of cells.

“Alzheimer’s disease is a devastating disorder for which there are no satisfactory treatments,” says Greengard, Vincent Astor Professor and director of the Fisher Center for Alzheimer’s Research at Rockefeller. “Our findings reveal that γ-secretase activating protein is a potential target for a new class of anti-amyloid therapies.” Greengard won the 2000 Nobel Prize in Physiology or Medicine for research into how neurons communicate.

sample brain tissue

In Alzheimer’s disease, amyloid plaques (dark spots) are the hallmark of the disorder. When scientists knocked out the gene that produces GSAP in a mouse model of the disease (bottom), the mice developed fewer amyloid plaques.

Scientists have been searching for ways to reduce amyloid-β production in Alzheimer’s patients by blocking γ-secretase, but most γ-secretase inhibitors also block the cleavage of an important immune system molecule called Notch. Notch plays a pivotal role in the development of blood-forming organs and the immune system. Earlier research by Greengard and his colleagues showed that Gleevec, a drug used to treat leukemia and gastrointestinal stromal tumors, successfully inhibited the ability of γ-secretase to form amyloid-β without affecting the Notch pathway.

In the new study, led by Gen He, a research associate in Greengard’s lab, the researchers showed that GSAP stimulates production of amyloid-β in cell lines, and that reducing GSAP reduces amyloid-β. The researchers also looked at GSAP’s action in a mouse model of Alzheimer’s disease. They knocked down the gene that codes for GSAP using RNA interference, and found that levels of amyloid-β as well as plaque development decreased. Biochemical studies showed that Gleevec reduces amyloid-β production by binding to GSAP and preventing its activation of γ-secretase.

Unfortunately, the Gleevec molecule does not cross the blood-brain barrier, the gatekeeper that prevents some substances in the blood from entering the brain. Greengard, however, believes that it will be possible to design drugs that target GSAP but do not have this limitation.

“Anti-amyloid therapeutic drugs represent a valid approach to treating Alzheimer’s disease, but their inability to accumulate in the brain has limited their usefulness,” says Greengard, who is head of the Laboratory of Molecular and Cellular Neuroscience. “The development of compounds that work like Gleevec, but have the ability to pass the blood-brain barrier and target GSAP, could revolutionize the treatment of this disease.”

Material adapted from The Rockefeller University.

Reference
Gen He, Wenjie Luo, Peng Li, Christine Remmers, William J. Netzer, Joseph Hendrick, Karima Bettayeb, Marc Flajolet, Fred Gorelick, Lawrence P. Wennogle and Paul Greengard (September 2, 2010). Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467: 95–98.

, , , , , , ,

No comments yet.

Leave a Reply

* Copy This Password *

* Type Or Paste Password Here *

Proudly hosted by Lightning Base